If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2+3k-1=0
a = 9; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·9·(-1)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{5}}{2*9}=\frac{-3-3\sqrt{5}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{5}}{2*9}=\frac{-3+3\sqrt{5}}{18} $
| 2x/1+x=3 | | 3y-7=21 | | 11x-13=4X+8 | | X=10,5-0,5y | | 5x+9=108-8x | | 7+37x=20x+25 | | 12x=14x=11/6 | | 156/180=x | | 12x+7-7=21-8 | | 5(x+8)=2x-7+8(x=1) | | 2x-4=9-88 | | 3z/8+9=-2 | | (x-3)/6=(x-5)/4 | | 16^2x=4^x-1 | | 4+3(7+4x2)-100=x | | -3-(-21)-18=x | | -2^x=-16 | | 5(f–3)=f+10 | | 8^x=0,125 | | n+36=4n | | 7k-21=2k-5 | | 2^x=0,25 | | 2x÷3-4=6 | | 15–2n=19 | | ✓(45/125)=x | | 4x^2−25=0 | | m+4÷6=24 | | 12*25=x | | 5l+(4l-8)=100 | | 4(4.5x-3.5)=2.5+15 | | 3x+1×12=5 | | 5^x+3=25^3x-4 |